A carbon-source-responsive element is required for regulation of the hypoxic ADP/ATP carrier (AAC3) isoform in Saccharomyces cerevisiae.
نویسندگان
چکیده
The mitochondrial ADP/ATP carrier in Saccharomyces cerevisiae is encoded by three genes that are differentially expressed under different physiological conditions. We investigated the transcriptional control of AAC3, an oxygen-repressed isoform. By deletion analysis, DNA electrophoretic mobility-shift assays, DNase I footprinting and site-directed mutagenesis, we have identified a promoter region (upstream repressing sequence 1, URS(1)) involved in a carbon-source-dependent repression of AAC3. It is different from the previously characterized oxygen-dependent ROX1 (regulation by oxygen 1) repressor-binding region (URS(2)). The complex character of URS(1) includes the presence of two different cis-acting sequences: (i) a RAP1 (repressor activator protein 1)-binding site that is capable of binding the RAP1 protein in vitro and (ii) two putative ethanol-repression sequences, the modification of which derepresses the AAC3 gene. These findings demonstrate that the hypoxic AAC3 gene is regulated by two upstream repressor sites; one controlled by oxygen and haem, the other by the carbon source. Both sites function to completely switch off the expression of the AAC3 isoform when ATP is made by oxidative phosphorylation, and they modulate AAC3 expression when import of glycolytic ATP into mitochondria is required.
منابع مشابه
Heterologous complementation of the Klaac null mutation of Kluyveromyces lactis by the Saccharomyces cerevisiae AAC3 gene encoding the ADP/ATP carrier.
The KlAAC gene, encoding the ADP/ATP carrier, has been assumed to be a single gene in Kluyveromyces lactis, an aerobic, petite-negative yeast species. The Klaac null mutation, which causes a respiratory-deficient phenotype, was fully complemented by AAC2, the Saccharomyces cerevisiae major gene for the ADP/ATP carrier and also by AAC1, a gene that is poorly expressed in S. cerevisiae. In this s...
متن کاملThe molecular basis for relative physiological functionality of the ADP/ATP carrier isoforms in Saccharomyces cerevisiae.
AAC2 is one of three paralogs encoding mitochondrial ADP/ATP carriers in the yeast Saccharomyces cerevisiae, and because it is required for respiratory growth it has been the most extensively studied. To comparatively examine the relative functionality of Aac1, Aac2, and Aac3 in vivo, the gene encoding each isoform was expressed from the native AAC2 locus in aac1Delta aac3Delta yeast. Compared ...
متن کاملStructure-function relationships of the C-terminal end of the Saccharomyces cerevisiae ADP/ATP carrier isoform 2.
The adenine nucleotide carrier (Ancp) catalyzes the transport of ADP and ATP across the mitochondrial inner membrane, thus playing an essential role in the cellular energy metabolism. Two regions of Anc2p from Saccharomyces cerevisiae are specifically photolabeled using a photoactivable ADP derivative; they are the central matrix loop, m2, and the C-terminal end. To get more insights into the s...
متن کاملThe Suppressor of AAC2 Lethality SAL1 Modulates Sensitivity of Heterologously Expressed Artemia ADP/ATP Carrier to Bongkrekate in Yeast
The ADP/ATP carrier protein (AAC) expressed in Artemia franciscana is refractory to bongkrekate. We generated two strains of Saccharomyces cerevisiae where AAC1 and AAC3 were inactivated and the AAC2 isoform was replaced with Artemia AAC containing a hemagglutinin tag (ArAAC-HA). In one of the strains the suppressor of ΔAAC2 lethality, SAL1, was also inactivated but a plasmid coding for yeast A...
متن کاملSal1p, a calcium-dependent carrier protein that suppresses an essential cellular function associated With the Aac2 isoform of ADP/ATP translocase in Saccharomyces cerevisiae.
Adenine nucleotide translocase (Ant) catalyzes ADP/ATP exchange between the cytosol and the mitochondrial matrix. It is also proposed to form or regulate the mitochondrial permeability transition pore, a megachannel of high conductancy on the mitochondrial membranes. Eukaryotic genomes generally contain multiple isoforms of Ant. In this study, it is shown that the Ant isoforms are functionally ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 352 Pt 3 شماره
صفحات -
تاریخ انتشار 2000